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A position encounter-evasion differential game with non-stationary geometric
constraints on the players' controls is analyzed. It is proved that the alternat-
ive is valid for this game, stating that either the position encounter game or
the position evasion game is always solvable, The proof uses constructions an-
alogous to the corresponding ones from {11

1, Let the behavior of a controlled system X be described by the equation
"= f{, e, u,v), uesRP, ve RT (1.D

Here = is the system’s n ~dimensional phase vector; u and » are the controls of
the first and second players, respectively, Let Q (R®) be the space of all nonempty
compacta in R° with the Hausdorff metric

h: Q (R%) X Q (R%) — RY

h(A,By=min{e> 0|4 CB+ S, BC A4+ S,}

s 1y
Se={(ze= Rjr]<e), Jzl=() x%)
i=1
Let the measurable multivalued mappings (see [2, 3]
P: R' — Q (RP), Q: R' — Q (RY)
be specified, We take it that at each instant : the players choose their own controls
u () and » () from sets P (¢) and Q (¢), respectively.
We assume that the function f (-, =, », v): B! — R™ is measurable for all z = R",
u & RP, » = R?, while the function (s, -, -, *): " X R?P X R?Y — R"is continu~
ous for any re RL. By L,'° we denote the set of all locally Lebesgue = summable
functions g: R* — RI. Let the inequality

Pt o e, 0) — fl g, ) SA(D) |2 — v (1.2)

where the function A (+) = L,® and is nonnegative, be fulfilled for all =,y = R",
ue=sP () and 2=Q (1) .
We assume that the inequality

PP e, ) | <SSk +[=0) (1,3)

is valid for all = & R™u = P (1) and ¢ & Q (1) where the function & (-) = ,'
and is nonnegative.

We take it that the saddle point condition in the small game (see [1] is fulfilled
in the following form;
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oy o B ) = ot (o f Co 2o 0) 1.4
for any =, s = R" and for almost all ¢ & R*
By P (- |4, t;) we denote the set of all measurable branches of mapping P: Rt —
Q (RP) on the halfopen interval [#;, ) . By the theorem on measurable selectors
(see [2, 3]) this set is not empty. A mapping which associates a nonempty set from
P (- {t, ) withan arbitrary position (¢, z) is called the first player's strategy U +
U(-|t,z) » Thesymbol Q(-|¢, t;) and the second player's strategy V + V (- | ¢,
%) are defined analogously.
Suppose that the first player has chosen a strategy U = U (- | ¢, 2}, We consider
a partitioning A of the semiaxis [%, ©) into a system of half-open intervals of the
form 7, <t Ty, i=0,1,2, ..., {4 =1, T;— o as {—oc. Wedenote} A
| = sup; (154 — 7;). Let () & Q (- | 1o, o) be an arbitary realization of the second
player's operations, We consider the ordinary differential equation
= f(t, 2, u; (8), v (1)), T < Ty
() E UGt om), i=0,1,2 ...

z (tg) = %o

This equation has a solution « {¢) = 2 (5 ty, x, U, v (+)), continuable onto [z, co) ,
which is called the Euler polygonal line generated by the first player's strategy U/ «
U (-1t %).), Every function x (-) for which we can find, on any finite interval ¢
<t << 4, asequence {z (-)} of Euler polygonal lines =z (1) = z, (i £y, =", U,
vy (+)),such that it converges uniformly to = (-) on the interval ¢ <<t <<z as|A®
| =0, o = 29, k = o0, iscalled a motion z(z) = v (f; ty, %, U) generated
by the first player's strategy U —+ U (- |¢,2) . The motion generated by the sec-
ond player's strategy V = V (- | ¢, z) is defined analogously,
Let the nonempty closed sets M. and N, be prescribed in position space R™'%.
The encounter-evasion game is put together from the following two problems,
Problem 1, Find the strategy U° + U° (- |t ») which ensures the contact

(tv x (t)) = ]vtl‘v tﬂ < t < Tv (T’ x (T)) € MC
tz{th &E M, <<t

for all motions x (1) = = (t; #4, g, U°).

Problem 2, Findopen neighborhoods H (N.) and G (M,) of sets A,
and M, and the strategy V¢ -+ V°(- |1, z}, such that the contact (r,z (1)) = H
{Ne), to <t <7, {7, 2 (7)) = G (M) is excluded for all motions = (1) = z (t; t5, %o,

ey,

When the set M. lies wholly in the halfspace {t & R |t < T} we speak  of
Problem 1 as the problem of encounter with set 3/, inside set N, by the instant T

and we speak of Problem 2 as the problem of evading M. inside N, up to the inst-
ant T,

2. Let conditions (1, 2) and (1, 3) be fulfilled. We consider the differential in-
clusion

econv{f{t z u )iue P (), ve Q@) 2.1
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It obviously has a solution z (-), continuable onto [t,, o) , satisfying the initial
condition = (¢) = ;. It can be shown that the inequality

(2 (0, u,2) | <m® () (2.2)

forall u=P () and » = Q (1) isvalid for any solution « (-} of inclusion (2. 1).
Bound (2. 2) is uniform for all positions (z, #,) from some bounded domain G of space
E™1 | Here the function m%-) & L;'°° and depends only on domain G.

The nonstationarity of the constraints on the player's controls leads to the follow-
ing modification of the definition of stability (see [1]), We say that a set W < R™"!
is u ~stable if for any position (tx, z4) & W, any instant ¢* >> ¢, and any control z*

(+) & Q (- [ ts, 1*) of the second player there exists a solution z (1), #4 << ¢t << ¢* , of
the inclusion
z" = conv {f(t, x, u, v* (0)); u = P (1)}

with initial condition = (14) = x4, such that (¢*, 2z (t*)) = W or (%, z (t*)) = M
for some t* & [t, *]. We say that a set 17 (- R"f1 is ¢ -stable if for any posit-
ion (i, x4} & W, and instant (*>> ¢, and any control u* () = P(- |1y, t*)  of the
first player there exists a solution z (1), 1, <C ¢ < t*, of the inclusion

z e conv {f(t, =, u* (1),v; v = Q (1}

with initial condition & (¢4) = xx, such that (¢*, = ((*)) &= Wor (t*, z(v*)) & H
(Ne} for some t* = [14, t*]. The property of u ~stability { « -stability) of set W
is defined with respect to a prescribed closed set M. (with respect to a prescribed
open neighborhood I (V) of a prescribed set N ). Such a definition of stability
properties, differing from the analogous definition in [1], does not alter the following
important property.

Lemma 1, Ifset Wis u-stable( o -stable), then its closure 1" is u -
stable (¢ -stable),

We now define the first player's extremal strategy U° < U (- | 1, 2} . Let (tx, 7x)
be an arbitrary position and let set 11" C R"*! be closed, We consider the hyperplane
T ={(t, ) @ R™ 1=t} , If I, W =¢, thenweset U® (-]t z)=P
(- | 1y, )5 if Tye | W=, then by w, we denote the vector of the section W (i)
of set W by hyperplane I'y,, which lies closest to (1, z,). Then

US (- g 24 = {e* () & P (| by, 00| max, (og — g, f (£, 25u% (1), 0)) =
veQ(f)

min = max (zy — Ox, f (I, 2y, u, v))}
ue P(t) veQ(!)

The second player's extremal strategy is defined analogously. Namely, if T, N W
=¢ , thenweset VE( |ix, 2x) =0Q (« | tx, ) ; if Tee(YW.5= ¢ , then

V‘(”t*a 1‘*):{2)*(*)6 Q('It*v DO! min ((!)*——0.)*, f(ts Ty U, 7}*(‘))) =
usP(t)

max min {(wg — g, f (£, 24, u, 2))}
vEQ(l) uSP{f)

The symbols w4 and Iy, here have the same meaning as above. Using Filippov's
theorem (see [3]), it is easy to prove that these definitions are well posed.

3, Let the function =z (1), t > 1, , satisfy the equation
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.’t. = j(tv x, u* (t), v (t))9 T (t*) = Ta
and let the function ¥ (1}, t > ¢, , satisfy the differential inclusion
y =conv {f(t,y, u,2* (1); v P ()}, ¥ () =y«
Here the function » (-) & Q (- | t4, o) is arbitrary, while u* (-) = P(- | t,, %) and
v* {-} & Q (- | tx, °°) have been chosen from the conditions
Sk = Ty T Yn
MAX (sy, f (t, zg, w* (), v)) = min max (s, [ (¢, 24, u, ?))

veQ(t) uEP{) vEQ()
min (sg, f(f, 24,1, 0% (1)) = max min (sg, f (¢, 2y, u, ?
n * )] vEQ(t)ueP(t)(* (t, zx, u, 7))

We denote p (1) = |z (8) -y ()]
Lemma 2, The following estimate:
t

1
PO < 6 () 152 frew)+femoamea (3.1
Ta ty
is valid and is uriform for all {x, =4} and (i, y«) from some bounded domain G C
R™3 | Here
t
m (1) = 4gh (1Y +8m° (1), g = diam G, o {¢,, )S =m° (E)d}
f,

where the function m° (-) is from (2, 2) and function A () is from (1. 2).
The proof of this statement differs only in certain details from that of the analog-
ous statement in [1],

4, The following barrier properties of extremal strategies enable us to prove the
theorem on the alternative,

Lemma 3, Let WC R beaclosed u -stableset, U® -+ U® (-1t 2)
be an extremal strategy and (t5, 29) & W . Then the inclusion {, z()) & W is
fulfilled for any motion = () = = (¢; 5, %o, U®) up to the contact (r, z (1)) = M, .

This statement can be proved in the same way as the analogous statement in {1],
except only that instead of the auxiliary bound (15, 1) in [1] we need to use the inequal~
ity

¢ ¢
2,2 (1) < (81:2 (ts) + tpk‘gi m (s) ds) exp (BS A (s) ds)
’Iv {A‘

SISt T @ =SUDSUR gy @ 0, k=1,2,..
Titl

where ;%) are the points of partitioning A™ corresponding to the polygonal line
zp (1) = 2 (4 to, 2", U®, v (). This inequality is a direct consequence of the u-
stability of set W and of Lemma 2, Completely analogously we obtain
Lemma 4, Ifaclosedset W e R™1 js v-stable, V¢ =+ Ve (.|¢ 2) isan
extremal strategy and (1, z,) = W , then the inclusion (¢, z(f)) e W is fulfilled
for any motion = (1) = « {#; t;, z,, V*) up to the instant T, when (r,z (1))} & H (N,).
The use of Lemmas 3 and 4 and a literal repetition of the arguments in Sections
16 and 17 of [1] lead to the following theorem.
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Theorem 1. Letan initial position (ty, zo) be given and an instant T >
be chosen. Then either a strategy U° =+ U (| ¢, #) exists, solving Problem 1 on en-
counter with M. inside N. by the instant 7', or open neighborhoods H (N.) and
G(M;) ofsets No and M. and a strategy V° + V°(-|¢ 2) exist, solving Problem
2 on evading M. inside N, up to instant 7.

N ote, The constructions presented are not changed if we use single-valued strat-
egies instead of multivalued ones, i,e,, if we define the first (second) player's strategy
as a mapping which associates a certain function from P (-] ¢, o) (Q (-] ¢, o)) with
a arbitrary position (¢, #) ,

In conclusion the author thanks N, N, Krasovskii, A. I, Subbotin and M, S, Nikol*-
skii for attention to the work.
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